Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Tao Wang,* Gui-Mei Tang and Wen-Zhu Wan

Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250100, People's Republic of China

Correspondence e-mail: ceswyt@sohu.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.055$
$w R$ factor $=0.148$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]Naphthalene-2,7-diol-imidazole (1/1)

The asymmetric unit of the title structure, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}$, contains two independent naphthalene-2,7-diol molecules and two independent imidazole molecules. In the crystal structure, molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains propagating along [100].

Comment

Currently, hydrogen bonding is important in the areas of crystal engineering, supramolecular chemistry, materials science, and biological recognition (Desiraju, 1989; Jeffrey \& Saenger, 1991; Holman et al., 2001). Recently, the structures of a series of supramolecules which contain angular dipyridyl base compounds and some acids have been determined (Wang et al., 2005a,b; Wang, Tang, Qin \& Duan, 2006; Wang Tang, \& Qin, 2006). To further explore the properties of cocrystalline materials of heterocyclic bases with angular acid components and to further understand the role of synthons in crystal engineering, we have prepared a $1: 1$ cocrystal of naphthalene-2,7-diol (ndo) and imidazole (im).

(I)

A view of the asymmetric unit is shown in Fig. 1; it consists of two independent ndo molecules and two independent molecules of im. In the crystal structure, one-dimensional chains are formed along [100], via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1 and Fig. 2).

Figure 1
View of the asymmetric unit of (I), showing displacement ellipsoids drawn at the 30% probability level and H atoms as small spheres.

Experimental

To a solution of naphthalene-2,7-diol (80 mg 0.5 mmol) in methanol (5 ml), a solution of imidazole (80 mg 0.5 mmol) in methanol (5 ml) was added. The mixture was filtered. After one week, colourless block-shaped crystals suitable for X-ray diffraction were obtained. Analysis found (\%): C 68.29, H 5.34, N 12.19; requires (\%): C 68.41, H 5.30, N 12.27.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}$
$M_{r}=228.25$
Monoclinic, $P 2_{1} / n$
$a=14.200(3) \AA$
$b=7.2927(18) \AA$
$c=22.375(5) \AA$
$\beta=101.921(4)^{\circ}$
$V=2267.1(9) \AA^{3}$

$$
Z=8
$$

$D_{x}=1.337 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless $0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD	11814 measured reflections
\quad diffractometer	4431 independent reflections
φ and ω scans	3000 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.032$
$(S A D A B S ;$ Sheldrick, 1996)	$\theta_{\max }=26.0^{\circ}$
$T_{\min }=0.973, T_{\max }=0.982$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.148$
$S=1.02$
H atoms treated by a mixture of independent and constrained refinement

4431 reflections
331 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0783 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	0.90 (2)	1.81 (2)	2.703 (2)	171 (2)
N3-H3 \cdots O 3	0.85 (3)	2.01 (3)	2.850 (3)	169 (2)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2{ }^{\text {i }}$	0.91 (3)	2.15 (3)	2.908 (3)	141 (3)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 4^{\text {ii }}$	0.95 (2)	1.78 (2)	2.711 (2)	169 (2)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iii }}$	0.90 (3)	1.89 (3)	2.786 (2)	171 (3)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 4^{\text {iv }}$	0.94 (3)	1.75 (3)	2.688 (2)	172 (2)

Symmetry codes: (i) $x+1, y, z$; (ii) $-x,-y+1,-z$; (iii) $-x+1,-y+1,-z$; (iv) $x-1, y, z$.

Figure 2
Packing plot, showing hydrogen bonds as dashed lines.

H atoms bonded to N and O atoms were freely refined with isotropic displacement parameters. All C-bound H atoms were placed in geometrically idealized positions and refined in the riding-model appproximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the Starting Fund of Shandong Institute of Light Industry (to Dr Yong-Tao Wang).

References

Bruker (2001). SMART and SAINT, Bruker AXS, Madison, Wisconsin, USA.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. New York: Elsevier.
Holman, K. T., Pivovar, A. M., Swift, J. A. \& Ward, M. D. (2001). Acc. Chem. Res. 34, 107-118.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL, University of Göttingen, Germany.
Wang, Y.-T., Tang, G.-M. \& Qin, D.-W. (2005a). Acta Cryst. E61, o3623-o3624.
Wang, Y.-T., Tang, G.-M. \& Qin, D.-W. (2005b). Acta Cryst. E61, o3979-o3980.
Wang, Y.-T., Tang, G.-M., Qin, D.-W. \& Duan, H.-D. (2006). Acta Cryst. E62, o45-o46.
Wang, Y.-T., Tang, G.-M. \& Qin, X.-Y. (2006). Acta Cryst. E62, o1496-o1497.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

